
INTRODUCTION 
 
• Contemporary deep learning techniques have been revolutionary for the 
classification of images, speech signals, and other data types, yet are 
rarely applied in the analysis of cognitive neuroscience datasets. 
 

• We explored whether deep learning could be fruitfully applied to EEG 
MVPA in a visual perception and refreshing dataset previously analyzed 
with Sparse Multinomial Logistic Regression (SMLR). 
 

• How does training an individual model per subject and a single, 
universal model across subjects influence classification accuracy? What 
deep learning models are effective, and under what circumstances? 
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FUTURE DIRECTIONS 
 

• Deep learning models have many more configurable parameters than 
traditional MVPA methods; continue to fine-tune these models. 
 

• Test alternative deep learning architectures; examine other test datasets; 
employ alternative training paradigms (e.g., transfer learning). 
 

• Explore strategies for data augmentation, which can significantly boost 
deep learning performance. 

ANALYSIS METHODS 
 

• Bandpass filter of .01–100Hz during acquisition. Trials rejected with 
peak-to-peak amplitude > 150µV; EOG signal regressed out and each trial 
linearly detrended. Pre-cue baseline (100ms) average subtracted. 
 

• Time binning for some analyses averaged timepoints in 40-ms bins. 
 

• Classification was over category viewed/refreshed; chance = 33.33%. 
 

• Traditional MVPA (SMLR, SVM) analyses: Matlab with custom code. 
 

• Deep learning (MLP, CNN, LSTM, LSTM+CNN) analyses: Python 
using Keras and Theano libraries. 

 
 

RESULTS & CONCLUSIONS 
 

• Consistent with prior results, perceptual categories were substantially 
more decodable than refreshed categories. 
 
• Single-subject analyses for deep learning models were omitted from the 
table, as they frequently failed to converge, yielding unstable results. 
 
• Traditional MVPA models (SMLR and SVM) performed best on time-
binned data. 
 
• Deep learning models (MLP, CNN, LSTM, LSTM+CNN) performed 
best on non-time-binned data. 
 
• Neither traditional MVPA nor deep learning models showed evidence of 
a single model dominating over competing models for all cases. 
 
• Deep learning approaches can offer mild benefits over traditional 
approaches, given enough data. 
 
• As model complexity increases, so does the negative impact of 
dimensionality reduction. 

FIGURE 1: PREVIOUS ERP RESULTS  

TABLE 1: TRADITIONAL MVPA RESULTS TABLE 2: DEEP LEARNING RESULTS 

Bold timepoints (left): Significant difference between conditions at 
FDR-corrected threshold. 

Bold timepoints (right): Significant difference between conditions at 
uncorrected threshold. No timepoints survived FDR correction. 
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Model Subjects Interval Time 
Binned Accuracy 

SMLR Single Presentation Yes 58.69% 

SMLR Single Presentation No 59.02% 

SMLR Single Refresh Yes 37.96% 

SMLR Single Refresh No 36.36% 

SMLR Universal Presentation Yes 62.83% 

SMLR Universal Presentation No 57.54% 

SMLR Universal Refresh Yes 35.53% 

SMLR Universal Refresh No 34.5% 

SVM Single Presentation Yes 59.09% 

SVM Single Presentation No 57.45% 

SVM Single Refresh Yes 37.59% 

SVM Single Refresh No 37.04% 

SVM Universal Presentation Yes 62.02% 

SVM Universal Presentation No 59.51% 

SVM Universal Refresh Yes 35.66% 

SVM Universal Refresh No 35.63% 

Model Subjects Interval Time 
Binned Accuracy 

MLP Universal Presentation Yes 54.29% 

MLP Universal Presentation No 55.69% 

MLP Universal Refresh Yes 34.33% 

MLP Universal Refresh No 35.06% 

CNN Universal Presentation Yes 60.04% 

CNN Universal Presentation No 62.09% 

CNN Universal Refresh Yes 34.75% 

CNN Universal Refresh No 35.63% 

LSTM Universal Presentation Yes 58.44% 

LSTM Universal Presentation No 63.61% 

LSTM Universal Refresh Yes 35.91% 

LSTM Universal Refresh No 37.72% 

LSTM + 
CNN Universal Presentation Yes 46.89% 

LSTM + 
CNN Universal Presentation No 64.36% 

LSTM + 
CNN Universal Refresh Yes 32.65% 

LSTM + 
CNN Universal Refresh No 34.30% 

FIGURE 2: TASK DESIGN  
 

MODELS 

Task/EEG Methods: 
 

•  31 channels low-impedance (<5kΩ) 
•  Sampled at 250 Hz 
•  37 young, healthy subjects 
•  Initial presentation interval: 1500ms 

of a pair of faces, scenes, or words 
presented onscreen 

•  Refresh interval: 1500ms arrow cue 
directing participants to reflectively 
attend (think back to) one item 

•  NoAct / Act: Control conditions for 
refresh cue (not analyzed here) 

•  ~200 trials/subject for initial 
presentation 

•  ~100 trials/subject for refresh 

SVM SMLR 

MLP CNN 

LSTM 

SMLR: Sparse Multinomial Logistic 
Regression 
SVM: Support Vector Machine 
MLP: Multilayer Perceptron 
CNN: Convolutional Neural Network 
LSTM: Long Short-Term Memory 
Network 


